
Cost-Effective Smart Memory Implementation for

Parallel Backprojection in Computed Tomography

Qiuling Zhu, Larry Pileggi, Franz Franchetti
Dept. of Electrical and Compo Eng., Carnegie Mellon University, Pittsburgh, PA, USA

Email: qiulingz@andrew.cmu.edu, franzf@ece.cmu.edu

Abstract-As nanoscale lithography challenges mandate
greater pattern regularity and commonality for logic and memory
circuits, new opportunities are created to affordably synthesize
more powerful smart memory blocks for specific applications.
Leveraging the ability to embed logic inside the memory block
boundary, we demonstrate the synthesis of smart memory archi­
tectures that exploits the inherent memory address patterns of
the backprojection algorithm to enable efficient parallel image
reconstruction at minimum hardware overhead. An end-to­
end design framework in sub-20nm CMOS technologies was
constructed for the physical synthesis of smart memories and
evaluation of the huge design space. Our experimental results
show that customizing memory for the computerized tomogra­
phy (CT) parallel backprojection can achieve more than 30%
area and power savings while offering significant performance
improvements with marginal sacrifice of image accuracy.

Index Terms-Smart Memory; Hardware Synthesis; Com­
puted Tomography; Parallel Backprojection;

I. INTRODUCTION

Computationally intensive algorithms in medical image pro­

cessing (e.g., computerized tomography (CT)) require rapid

processing of large amounts of data and often rely on hard­

ware acceleration [1], [11], [2]. Inherent parallelism in the

algorithms is exploited to achieve the required performance

by increasing the number of parallel functional units at a cost

of power and area. The overall performance is often defined

by the limited bandwidth of the on-chip memory as well as

the high cost of memory access.
One approach to address these challenges is to optimize the

on-chip memory organization by constructing a customized
smart memory module that is optimized for a particular

function for higher performance and/or energy efficiency [14],

[13]. However, such customization is generally unaffordable

for an application-specific IC embedded memory for which

cost dictates that it is "compiled" from a set of SRAM

hard IP components (e.g., physical implementations of bitcells

and peripheral circuits). Such memory compilation limits the

possibility of application-specific customization and hinders

the system design space exploration.
Recent studies of sub-20nm CMOS design indicate that

memory and logic circuits can be implemented together using

a small set of well-characterized pattern constructs [8], [9].

Our early silicon experiments in a commercial 14nm SOl
CMOS process demonstrate that this construct-based design

enables logic and bitcells to be placed in a much closer
proximity to each other without yield or hotspots pattern con­

cerns. While such patterning appears to be more restrictive to

978-1-4673-2658-2112/$31.00 ©2012 IEEE

accommodate the physical realities of 14nm CMOS, the ability

to make the patterns the only required hard IP allows us to

efficiently and affordably customize the SRAM blocks. More
importantly, it enables the synthesis (not just compilation)

of customized memory blocks with user control of flexible

SRAM architectures and facilitate smart memory compilation.

To efficiently leverage this new technology, however, al­

gorithms and hardware architectures need to be revised. In
this paper we revisit the well-known Shepp and Logan's

backprojection algorithm that is widely used in the CT image

reconstruction [2]. It is observed that in the parallel imple­

mentation of the algorithm, the memory address differences

are fairly small for adjacent projection angles and adjacent
pixels. We exploit this property via a customized memory

structure that could feed in-parallel running image processing

engines (IPEs) with a large amount of required projection
data in one clock cycle. The implementation is realized by

embedding "intelligent" functionality into the traditional inter­

leaved memory organization and allow multiple memory sub­

banks to share the memory periphery. Novel periphery-sharing

smart memory strategies are explored, and an efficient parallel­

pipeline backprojection architecture is proposed. We further

construct a smart memory design framework that provides

the end user with finer control of the customized SRAM

architecture parameters, thus enabling automatic generation of

the specified implementation. Physical implementations were

carried out in a commercial 14 nm SOl CMOS process. Our

results indicate that there is more than 40% area savings and
30% power savings while providing significant performance

improvements. The marginal impact on accuracy is minimized

with appropriate constraints on the algorithm.

Related work. In other related work various fast approaches

have been proposed to improve the backprojection imple­

mentation [11], [7], [6], [2]. As pointed out in [2], these

approaches may be classified into three categories; namely,

algorithmic improvement, dedicated hardware, and parallel
processing. However, this paper shows that it is possible

to combine these three aspects to deliver a more efficient

backprojection architecture by taking advantage of the avail­

ability of smart memory synthesis. Our approach optimizes

the parallel backprojection architecture, especially the on­

chip memory architecture, by exploiting the inherent memory

address pattern that has not been previously explored.

Fig. I. Illustration of Parallel-Beam Projection: The object to be scanned is
placed between the evenly spaced array of an unidirectional X-ray source and
the detector. Radiation beams from the X-ray source pass through the object
and are measured at the detector, forms the projections of the image.

II. ADDRESS PATTERN EXPLORATION

In a parallel-beam CT scanning system, as shown in Fig. 1,

the object to be scanned is placed between the evenly spaced
array of an unidirectional X-ray source and the detector.

Radiation beams from the source pass through the object and

are measured at the detector. A complete set of projections

is obtained by rotating the arrays and taking measurements

for different angles over 1800, forming the Radon transform

of the image (i.e., projection data). The inverse of the projec­

tion data allows to reconstruct the tomographic images (i.e.,

backprojection) [12], [1].

Shepp and Logan backprojection algorithm. The Shepp
and Logan backprojection algorithm is the most well-known

backprojection algortithm [2], [3]. For each pixel, P located

at (x, y), and each projection angle ei, the first step in

backprojection is to locate the pixel in an appropriate beam

(ray). If the center of P is not on a ray, the distance (d)
to its adjacent rays is calculated and the contribution from

the adjacent rays to the pixel (Qp) is computed according to

the linear interpolation equation (1), assuming that pixel is
enclosed by the tth and (t + l)thth rays,

Qp(x,y,ei) = Rt + (djL) · (Rt+1 - Rt), (1)

where Rt is the value of tth ray, d is the interpolation distance,

and L is the ray interval. Qp represents the contribution of the

projection angle ei to the current pixel value.

In the above equation, the address t to the projection data
memory and the interpolation distance d are computed as

follows (assuming the target image has the dimension size

of r x c):
r c

tx,y,Oi = (x -"2) . cos ei -(y -"2) . sin ei + t offset· (2)

d = t(e) - It(e)J. (3)

Address difference. The above procedures are to be re­

peated for every angle and for every pixel, which involves sig­

nificant address computation and memory access operations.

However, these operations can be simplified by the observation

that the address differences for adjacent pixels and angles are

within a very small and predictable range. To illustrate this

inherent address pattern, we show the address to the next
projection of angle eH1 in (4):

r c
tx,y,Oi+l = (x -"2) . cos (eH1) -(y -"2) . sin (eH1) + toffset·

(4)

The address difference (<5h) between (2) and (4) could be as

r c
<5h = (x -"2) . <5cosoi + ("2 -y) . <5sino" (5)

with <5cosoi = cos(ei+1) -cos(ei) and <5sinOi = sin(eH1) -
sin(ei) . Using trigonometric identities, we can compute the

bounds on (5) as follows (assuming r = C and N is the total

number of projections):

. n r n(2i + 1) n(2i + 1)
l<5h l::;12.sm(N)·"2·(cos(N)-sin(N))1·

(6)

(6) has a maximum bound of v'2n· N for relatively large N.
This shows that <5h is limited to a fairly small range when

the appropriate ratio of r and N is selected. For example, the
value is always less than one when N ::; �.

This observation can easily extend to two scenarios below:

(a) The address difference between the next k projection

memory of angle ek and the first memory of angle e1 for

the same pixel P(x, y) will increase proportionally to k:
rc; r r

Ibtk l = Itx,y,Oi+k -tx,y,o, l ::; v2n· N ·k· � 4.44· N ·k . (7)

(b) The address differences when both pixel coordinate and
projection angle are incremented are also bounded by a limited

range. For demonstration purpose, we define the problem as
to reconstruct four neighborhood pixels in parallel, that is,

(x, y), (x + 1, y), (x, y + 1), (x + 1, y + 1). Then, their

addresses in adjacent k projection memories for angles from

ei and eHk need to be computed. We denote the address of

the first pixel (x, y) in the first memory ei as the reference

address (to = tx,y,o'). Then we can easily prove that other
addresses are all very close to to for the required k, and the

maximum possible address difference to to is introduced by
the last pixel (x+ 1, y+ 1) in the last projection memory eHk.

<5tmax = tx+1,y+1,Oi+k -tx,y,Oi = cosei+sinei+k·<5h . (8)

It is easy to show that (8) has the maximum value of v'2 +
4.44 . N . k and it is limited to small range, e.g., the value

must be less than four when N ::; � and k = 4.
The basic idea is, since the address differences for adja­

cent projections angles and adjacent pixels are small, these

addresses will activate the same or adjacent wordlines when

such memories are located horizontally in parallel with each

other. It leads to opportunities to share the memory decoder

among these memories by programming extra "intelligent"

logic functionalities into the memory periphery.

III. SMART MEMORY CUSTOMIZATION FOR

PARALLEL BACKPROJECTION ARCHITECTURE

In this section, we describe our approach to optimize the

memory organization and backprojection architecture based on

the observed memory access patterns.

X
decoder f-H:.-----'---++-I�----'---_+f___--�_+h_--�-

Fig. 2. Consecutive Access Memory. As the basic memory structure in the
paper, our customized memory can output consecutive memory entries in one
clock cycle and allows parallel memory banks to share the x-decoder.

A. Consecutive Access Memory

As we mentioned, linear interpolation is an important proce­

dure of the algorithm. Linear interpolation requires the access

to two adjacent array addresses of the projection memory in

a single clock cycle. In our previous work [15], we have
proposed a rectangular-access smart memory which is able to

output an arbitrary rectangular block in a 2D data array. Its 1D
simplified version, called 1D Consecutive Access Memory, can

be used to output consecutive elements from a 1D data array.

The functionality is defined as to support single-clock-cycle
access of 2b data points from a 2n size data array. We build a

parameterized memory which is first divided into 2b memory

banks and these memory sub-banks are located horizontally

parallel to each other. Fig. 2 shows the organization of the

memory block when n = 6 and b = 2. The main idea is to let
these 2b memory banks share one modified X-decoder. The

X -decoder is specifically designed to activate two adjacent

wordlines simultaneously (e.g., W L[O] and W L[l D. Another

Y -decoder is used to select one of the two activated word lines

for each memory bank with the additional AND operations.

This consecutive access memory serves as the basic memory
structure in our method. In the rest of paper, we will propose

more advanced memory sharing strategies customized for

backprojection algorithms.

B. Smart Memory Organization and Parallel Backprojection

We will use a simple example to show the basic idea of the

method. From the analysis of equation (6), we have derived

that the address difference of the two adjacent memories (!Stol)
is less than one when N ::::; �. This implies that the two

adjacent memory addresses after rounding must be either the
same or adjacent to each other. In Fig. 3, we show the physical

data layout in our consecutive access memory. If the address

of projection Bi is located in between t2 and t3 (denoted by
[t2' t3D, then the address in the next adjacent projection BHI
for the same pixel has only three possible locations, that is,

[tl' t2], [t2' t3] or [t3, t4]. In the illustration we highlight the
corresponding active wordlines if implemented in the consec­

utive access memory. It's seen that if the active wordlines for

the first memory are wh and Wl2, then in the next memory,

the active wordlines must be either the same (wh and Wl2) or

.---..
w/ :wl I wi : � to t1 Ii � to I t1 I '� to t1 I � to t1 I i
'� t2 t3 I!'� t2 I t3 I '� t2 t3 I '� t2 t3 I!
'::i.1 t4 t5 I!� t4 I t5 I '� t4 t5 I '� t4 t5 I i
15..1 t6 t7 I!� t6 I t7 I '� t6 t7 I'� t6 t7 I!
Projection angle B, ! B,+, (a) c, = I (b) c, = 0 (e) c, = 0 ! (Reference) "---.

Fig. 3. Data Layout in Adjacent Two Projection Memories. If t2 and t3 are
required in the first reference memory of the projection ()i, then beam pixel
required in the next memory of projection ()i+ 1 has three possible locations,
that is, [t1,t2], [t2.ta] or [t3,t4].

G,G,
configuration logic

/
(decode,_mux) � G,G,

wlao wlao 0
wlbo wlbo

wla, lVlb) lVla) lVlb)
wla, wlb, wla, wlb,
wlaJ wlb] wlaJ wlb3
wla4 wlb4 wla4 wlb,
wla, wlb, wla, wlb,

(a) c, = 0 (b) c, = 1

Fig. 4. Decoder-MUX. The wordlines of the first memory (wlai) are
configured to generate the wordlines for the next memory (wlbi), so that
the decoder of the latter memory could be eliminated.

shifted upwards by one step (wlo and wh). We use a control

signal ct to differentiate these two situations and ct can be

calculated from the input address. Based on this observation,

we propose two "smart" memory approaches which are named

decoder-mux and output-mux respectively.

Decoder-mux. In the first approach, called decoder-mux,

we eliminate the decoder of the second memory and let it

share the same decoder with the first memory by adding

some configuration logic (which we also call decoder-mux)

in between the two sets of memory wordlines. This logic

configures the wordlines of the first projection memory (wlai)
to generate the wordlines for the next adjacent projection

memory (wlbi). The relationship between the wordlines of the
two adjacent memories can be derived as

(9)

The configuration can be implemented using only AND

and OR logic gates, which ensures the feasibility of the

hardware implementation. In Fig. 4, we show an example

of the configuration logic involving six wordlines. In this

example, wlal and wla2 are activated in the first memory

array. After the decoder-mux block, either the same wordlines,

wlbl and wlb2, are activated in the second memory when

Ct = 0 (Fig. 4(a)), or the neighborhood wordlines, wlbo and
wlbl, are activated when Ct = 1 (Fig. 4(b)).

Output-mux. In the alternative approach named output-mux

the two memories still share the decoder but the configuration

logic is located outside of the memory (see Fig. 5). In this

approach, memories are designed as the 1 x 4 consecutive

access memories to output more elements than required. In this

example, t2, t3 along with their nearest neighbors tl and t4 are

all read out from the memories. Then the configuration logic

Projection B (Reference)/ (I) (b) (e)

Fig. 5. Output"MUX. The memories are configured to output four pixels
simultaneously, and the output mux is used to select the required two pixels
from the four outputs for the liner interpolation in each backprojection.

(output-mux) is used to select the appropriate two elements

from the four outputs. In this approach, the active wordlines

for the two memories are always the same in all the situations.

Horizontal and vertical parallel backprojection. The CT

image reconstruction naturally lends itself to parallel process­

ing since each backprojection can be processed independently.

However, in the conventional parallel backprojection, on-chip

memory is typically divided into many small banks to support

the necessary large data bandwidth. To exploit the proposed

smart memory to obtain superior hardware efficiency of the
parallel backprojection, we propose two parallel approaches,

horizontal and vertical parallel backprojection.

The horizontal parallel backprojection can perform more
than two backprojections in parallel and all the involved

projection memories share the same memory decoder using

either decoder-mux or output-mux approach. Fig. 6 shows the

example of accessing in eight adjacent projection memories.

Assuming that the pixels addressed by the first memory

addresses are t3 and t4, we highlight the possible locations

of the two pixels accessed in the next seven memories. We

observe that they are all clustered locally around t3 and t4,
and are bounded by to and t7' For example, the pixels required

for projection eH3 could be any two adjacent pixels within

[h, t6]. Required pixels spread out further from t3 and t4
for memories that are further away from the first memory as

explained by formulae (7), as the address difference of the next

k projection memories from the first reference is increasing

proportionally with k. Similar to the output-mux design shown

in Fig. 5, we configure each projection memory as an 1 x 8
consecutive access memory to output all the shown eight pixels

and use another 8-to-2 output-mux to select the appropriate

two outputs from the eight outputs for each projection memory.

In this way, all the eight memories could share the same

decoder and seven memories decoders are saved. However,

as the projection memories output more pixels than required,

many memory outputs are actually wasted. An approach to use

these wasted pixels is applying vertical parallel backprojection,

as discussed next.

Vertical parallel backprojection is performing the backpro­

jections of multiple neighborhood pixels in parallel. E.g., in
equation (8) we discuss the address differences for performing

the backprojections of four neighborhood pixels concurrently.

Hili IIIIII
t" 0 1 0 0 0 (reference) c .. "." .. "." .. "._."._."._." .. "." .. "." .. "._."._."._." .. "." .. "." .. "·-·"·-·"·-"""·"""·"""·-e-·"·-·"""·"".""·

0; 0;+1 0;+2 0;+3 0;+4 0;+5 0;+6 0;+7
Fig. 6. Parallel Projection Memory Accessing. The highlighted two"pixel
groups represent the beam pixels that have chances to be accessed in each

Image
buffer

Image bus
���---.---,---.--�---.-- --�--��
P(x+l,y)

P(x,y+l) lPEo
P(x+l,y+l)

Fig. 7. Backprojection Architecture. Each IPE stores and performs eight
backprojections for four neighborhood pixels concurrently.

Backprojection of each pixel per projection angle requires one

linear interpolation and involves memory accessing of two

pixels, so totally it requires eight pixels to be accessed from

each projection memory. (8) shows that these eight pixels will

be contained in the outputs of the above 1 x 8 access memory

in most situations. Therefore, the memory architecture needs

no change for the vertical parallel backprojection since we
just take advantage of the unused memory outputs from

the horizontal parallel backprojection. By implementing both

horizontal and vertical parallel backprojection concurrently

using the modified consecutive access memory, all the memory

outputs are utilized and a much higher throughput is achieved.

Advanced parallel pipeline backprojection engine. Based

on our proposed horizonal and vertical backprojection methods

we designed an Advanced Parallel Pipeline backProjection

Engine (APPPE) based on the Parallel Pipeline backProjection

Engine (PPPE) that was proposed in [5], [I]. APPPE is

composed of a pipeline of identical image processing engines

(IPEs), where each IPE performs multiple backprojections to

multiple pixels concurrently. Fig. 7 shows an example where

the input image passes through the IPEs on the pipelined image
bus, four pixels at a time. Each IPEi in the pipe performs

eight adjacent backprojects from ei to eH7 to the current four

pixels (P(x, y), P(x+l, y), P(x, y+l), P(x+l, y+l)), and

then passes these pixels onto the IPEHI as it receives another

four pixels from IPEi-I. As these pixels are sent through the

pipe lined array, the pixel values are accumulated from the
contributions of all the projections.

IV. DESIGN AUTOMATION

In this section we analyze the design space and describe

our design automation framework for the hardware synthesis

of a user-specified backprojection design point.

Design tradeoff space analysis. Designing a CT image

reconstruction system is a tradeoff problem involving algo­

rithmic constraints, performance, hardware cost, and image
accuracy. The discussion of address patterns in Section II

shows that the ratio of image dimension size (r) and the

projection numbers (N), rlN, is an important algorithm

constraint. Smaller r IN indicates smaller adjacent address

differences, which allows for more adjacent projection mem­

ories sharing the memory decoder, saving more hardware cost

and computing latency. However, it also limits the use of

the method in applications with larger image size r and/or
fewer projection angles N. For larger rlN, the corresponding

larger address difference will limit the number of projection

memories that can share the decoder. For example, in Fig. 6,

the last two projection memories of (}i+6 and (}iH may require

to access two pixels at the two ends, which are not accessible

along with other eight pixels from the 1 x 8 consecutive access

memory. To solve this problem we could increase the memory

access width and apply more complicated configuration logic.

However, this would increase the hardware cost. Alterna­

tively, to lower hardware cost we could assign the nearest

neighborhood pixels if the requested pixels are not available,

which would result in loss of image accuracy. This shows

that different design decisions will result in different tradeoffs.

The combination of these design choices constitutes a huge

design space. Further, exploring the design tradeoff space

requires customized memory designs, which are traditionally

prohibitively expensive. Thus, a strong design automation tool

is required to make the hardware synthesis feasible.

End-to-end smart memory design framework. We have

developed a smart memory design framework that provides

designers with a graphical user interface to select design

parameters, and automatically generate the optimized smart
memory hardware IP [14], [13], [15]. As shown in Fig. 8, the

tool frontend is built using the chip generator infrastructure

"GENESIS" [10], [4]. It provides a user-configurable graphical

interface that allows the user to input design specification and

generates the optimized RTL automatically. The tool backend

is a smart memory compiler for the physically synthesis of

customized smart memory, which is developed based on the

logic and memory co-design methodology [8], [9], [15]. Using
this tool, embedded random logic and memory periphery are

synthesized with the memory cells one shot to a small set of

pre-characterized layout pattern constructs. Lithographic com­

pliance between the co-designed logic and memory ensures

the sub-20nm manufacturability of smart memory blocks. The

architectural frontend and physical backend is combined to

build an end-to-end smart memory design framework. Its input

is the design specification and the output is the ready to use
hardware (RTL, GDS, .lib, .lef).

V. EVALUATION AND RESULTS

In this section, we evaluate the smart memory architectures

with respect to area, power, latency, and accuracy. The design

framework is used to generate various design points. Area and

power are measured from the physical implementations of the

design on a commercial 14 nm SOl CMOS process at 500MHz
and the shown results are all normalized.

Cost evaluation. In Fig. 9 (a), we first compare the hard­

ware cost of two smart memory approaches (decoder-mux

and output-mux) to the conventional memory approach where

Welcome to tbe
nteractive Chip Geoerato

oM'ered In' Genesis
Par1lmf'lf'n rorln"ancf' "lOp"

1J,,"".ra�e ��= -_�1
�::�� :=

A."GLESIZEI02"
DATA_PU:ClSIO:-'18

MDt_S YES

V PAltA1.l..£L ..
\"UAAAU.ELi8

Downloldllrofcurnnldellgn

Gui Link: [http://genesis.web.ece.cmu.edu/gui/scratchimydesign·13376.php I

Fig. 8. Smart Memory Design Framework

each memory has its own decoder. The memories studied
here have the size of 4,096-words and wordlength of 16 bits,

and we only consider two memories implemented as 1 x 8
consecutive access memories sharing the decoder with each

other. We observe that the output-mux approach is more cost­

efficient as saves around 30% area and 20% power while

decoder-mux only achieves around 5% area saving and 10%
power saving. The reason is that in decoder-mux each wordline

is accompanied by a set of configuration logic (two AND

gates and one OR gate), and each set of logic communicates

with its local wordline. This explains also why decoder­

mux achieves relatively higher power-efficiency compared to
its area-efficiency. In contrast, output-mux only requires a

single large configuration logic at the memory output while

its memories have large access width as they output more

pixels than required. Due to the superiority of the output-mux

method, it will be used for our backprojection system in the

following discussions.

In Fig. 9 (b) we evaluate the hardware cost of the MEPPPE

memory architecture for reconstructing a 256 x 256-size image

from 1,024 projections. The x-axis is the parallel degree Pd,
which is defined as the number of adjacent backprojections
that are performed in each IPE concurrently and its value

varies from two to eight. In our implementation these Pd
projection memories will all share the same memory decoder.

The y-axis shows the relative area and power compared to the

conventional design where no memory sharing strategies are

used. We see that more than 40% area savings and more than

30% power savings can be achieved with the increase of Pd.
Fig. 9 (c) shows that the latencies are decreasing proportionally

with the increase of Pd as expected. Moreover, we achieve a

four times performance improvement by computing four pixels

in parallel in each IPE.

Accuracy evaluation. As we gain in both of hardware cost

and performance, the effect on accuracy needs to be evaluated.
We measure the mean square error (MSE) of the reconstructed

image compared to the reference image and plot the results

in Fig. 10 for parallel degrees (Pd) from one to eight. As
expected, the error increases when either Pd or algorithm

parameter (r IN) increases. This is because that we let Pd
projection memories share the same memory decoder, and

it will introduce error if the address differences of these Pd

(a) Smart Memory Method Comparison
Normalized Area/Power for Different Memory Sharing Methods

1.2

(b) Area and Power Evaluation (c) latency Evaluation
Normalized latencyvs. Parallel Degree

0.6
Normalized Area/Power vs. Parallel Oegree

1

0.8

0.6

0.4

0.2

o

.Conventional .Decoder_mux Output_mux .Area 0.5

0.4

0.3

0.2

0.1

.One·pixel

• Four·pixels

Area Pd_2 Pd_3 Pd_ 4 Pd_S Pd_6 PdJ Pd_8

Fig. 9. Cost and Performance Evaluation

Accuracy Evaluation
Mean Square Error (MSE) vs. Parallel Degree

1.SE-02

8.0E-04

4.0E-OS

2.0E-OS

1.0E-07

• r/N=32/1024 • r/N=S4/1024 r/N=128/1024
• r/N=2SS/1024 • r/N=S12/1024

I
Pd_2 Pd_3 Pd3 Pd_S Pd_S Pd_7 Pd_8

Fig. 10. Accuracy Evaluation

0000
. " . '. " . " '

0000
. " " . : " " :

Fig. II. Display of Reconstructed Image

projection memories are not small enough which could happen

when Pd and (r / N) are large. In our implementation, we

carefully manipulate the data precision so that the numerical
errors can be ignored in the accuracy comparison. In Fig. 11

we display the reconstructed head phantom images from

hardware simulation, which indicates fairly high image quality

for all the studied parallel degrees. We also observe the gradual

deterioration of the image quality for higher parallel degree,

which allows us to tradeoff image accuracy with hardware cost

in applications where minor distortion is acceptable.

V I. CONCLUSION

The emergence of construct-based design facilitates the

robust synthesis of cost-effective smart memory blocks that are

customized for specific applications. This cutting-edge design

methodology creates opportunities to re-design algorithms and

re-architect the hardware structure to match the advanced tech­

nology capabilities. In this paper we propose smart memory ar­

chitectures and the end-to-end design framework to implement

them for the CT image reconstruction problems. The results in

a 14nm CMOS process demonstrate significant improvements

in area, power and performance. Moreover, we present the

opportunities to tradeoff hardware cost with acceptable image

accuracy based on appropriate algorithm tuning. This paper

demonstrates that the embedded memories in data-intensive

computing can exploit the smart memory design methodology

and the inherent address pattern of the algorithm to achieve

superior power and performance efficiency.

ACKNOW LEDGEMENT

The authors acknowledge the support of the C2S2 Focus

Center, one of six research centers funded under the Focus
Center Research Program (FCRP), a Semiconductor Research

Corporation entity.

REFERENCES

[I] I. Agi, P. J. Hurst, and K. W. Current. An image processing ic for
backprojection and spatial histogramming in a pipelined array. IEEE

Iournal of Solid-State Circuits, 28(3):210-221, 1993.
[2] C. Chen, Z. Cho, and C. Wang. A fast implementation of the incre­

mental backprojection algorithms for parallel beam geometries. IEEE
Transactions on nuclear science, 43(6):3328-3334, 1996.

[3] Z. Cho, C. Chen, and S. Lee. Incremental algorithm - a new fast
backprojection scheme for parallel beam geometries. IEEE Transactions
on Medical Image, 9(2):207-217, 1990.

[4] [online] http://genesis2.stanford.edulmediawiki/index.php.
[5] E. Hinkle, J. Sanz, A. Jain, and P. D. P3e: New life for projection-based

image processing. I.Paraliel Distribued Computer, 4(1):45-78, 1987.
[6] B. Jang, D. Kaeli, S. Do, and H. Pien. Multi gpu implementation of

iterative tomographic reconstruction algorithm. ISBI, pages 185-188,
2009.

[7] M. Luiz, M. Felipe, C. V ladimir, and L. Claudio. Reconfigurable hard­
ware for tomographic processing. Proceedings. XI Brazilian Symposium

on Integrated Circuit Design, pages 19-24, 1998.
[8] D. Morris, V. Rovner, L. Pileggi, A. Strojwas, and K. Vaidyanathan.

Enabling application-specific integrated circuits on limited pattern con­
structs. Symp. VLSI Technology, June 2010.

[9] D. Morris, K. Vaidyanathan, N. Lafferty, K. Lai, L. Liebmann, and
L. Pileggi. Design of embedded memory and logic based on pattern
constructs. Symp. VLSI Technology, June 2011.

[10] O. Shacham. Chip mUltiprocessor generator: automatic generation of
custom and heterogeneous compute platforms. PhD T hesis, Stanford,
2011.

[II] c. Srdjan, L. Miriam, and et al. Parallel-beam backprojection: An fpga
implementation optimized for medical imaging. FPGA, 2002.

[12] H. Yu. Memory architecture for data intensive image processing
algorithms in reconfigurable hardware. Master T hesis, 2003.

[13] Q. Zhu, C. R. Bergery, E. L. Turnerz, L. Pileggi, and F. Franchetti. Polar
format synthetic aperture radar in energy efficient application-specific
logic-in-memory. ICASSP, 2012.

[14] Q. Zhu, E. L. Turnerz, C. R. Bergery, L. Pileggi, and F. Franchetti.
Application-specific logic-in-memory for polar format synthetic aperture
radar. HPEC, 2011.

[IS] Q. Zhu, K. Vaidyanathan, O. Shachamy, M. Horowitz, L. Pileggi, and
F. Franchetti. Design automation framework for application-specific
logic-in-memory blocks. ASAP, 2012.

