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Abstract-As nanoscale lithography challenges mandate 
greater pattern regularity and commonality for logic and memory 
circuits, new opportunities are created to affordably synthesize 
more powerful smart memory blocks for specific applications. 
Leveraging the ability to embed logic inside the memory block 
boundary, we demonstrate the synthesis of smart memory archi­
tectures that exploits the inherent memory address patterns of 
the backprojection algorithm to enable efficient parallel image 
reconstruction at minimum hardware overhead. An end-to­
end design framework in sub-20nm CMOS technologies was 
constructed for the physical synthesis of smart memories and 
evaluation of the huge design space. Our experimental results 
show that customizing memory for the computerized tomogra­
phy (CT) parallel backprojection can achieve more than 30% 
area and power savings while offering significant performance 
improvements with marginal sacrifice of image accuracy. 

Index Terms-Smart Memory; Hardware Synthesis; Com­
puted Tomography; Parallel Backprojection; 

I. INTRODUCTION 

Computationally intensive algorithms in medical image pro­

cessing (e.g., computerized tomography (CT)) require rapid 

processing of large amounts of data and often rely on hard­

ware acceleration [1], [11], [2]. Inherent parallelism in the 

algorithms is exploited to achieve the required performance 

by increasing the number of parallel functional units at a cost 

of power and area. The overall performance is often defined 

by the limited bandwidth of the on-chip memory as well as 

the high cost of memory access. 
One approach to address these challenges is to optimize the 

on-chip memory organization by constructing a customized 
smart memory module that is optimized for a particular 

function for higher performance and/or energy efficiency [14], 

[13]. However, such customization is generally unaffordable 

for an application-specific IC embedded memory for which 

cost dictates that it is "compiled" from a set of SRAM 

hard IP components (e.g., physical implementations of bitcells 

and peripheral circuits). Such memory compilation limits the 

possibility of application-specific customization and hinders 

the system design space exploration. 
Recent studies of sub-20nm CMOS design indicate that 

memory and logic circuits can be implemented together using 

a small set of well-characterized pattern constructs [8], [9]. 

Our early silicon experiments in a commercial 14nm SOl 
CMOS process demonstrate that this construct-based design 

enables logic and bitcells to be placed in a much closer 
proximity to each other without yield or hotspots pattern con­

cerns. While such patterning appears to be more restrictive to 
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accommodate the physical realities of 14nm CMOS, the ability 

to make the patterns the only required hard IP allows us to 

efficiently and affordably customize the SRAM blocks. More 
importantly, it enables the synthesis (not just compilation) 

of customized memory blocks with user control of flexible 

SRAM architectures and facilitate smart memory compilation. 

To efficiently leverage this new technology, however, al­

gorithms and hardware architectures need to be revised. In 
this paper we revisit the well-known Shepp and Logan's 

backprojection algorithm that is widely used in the CT image 

reconstruction [2]. It is observed that in the parallel imple­

mentation of the algorithm, the memory address differences 

are fairly small for adjacent projection angles and adjacent 
pixels. We exploit this property via a customized memory 

structure that could feed in-parallel running image processing 

engines (IPEs) with a large amount of required projection 
data in one clock cycle. The implementation is realized by 

embedding "intelligent" functionality into the traditional inter­

leaved memory organization and allow multiple memory sub­

banks to share the memory periphery. Novel periphery-sharing 

smart memory strategies are explored, and an efficient parallel­

pipeline backprojection architecture is proposed. We further 

construct a smart memory design framework that provides 

the end user with finer control of the customized SRAM 

architecture parameters, thus enabling automatic generation of 

the specified implementation. Physical implementations were 

carried out in a commercial 14 nm SOl CMOS process. Our 

results indicate that there is more than 40% area savings and 
30% power savings while providing significant performance 

improvements. The marginal impact on accuracy is minimized 

with appropriate constraints on the algorithm. 

Related work. In other related work various fast approaches 

have been proposed to improve the backprojection imple­

mentation [11], [7], [6], [2]. As pointed out in [2], these 

approaches may be classified into three categories; namely, 

algorithmic improvement, dedicated hardware, and parallel 
processing. However, this paper shows that it is possible 

to combine these three aspects to deliver a more efficient 

backprojection architecture by taking advantage of the avail­

ability of smart memory synthesis. Our approach optimizes 

the parallel backprojection architecture, especially the on­

chip memory architecture, by exploiting the inherent memory 

address pattern that has not been previously explored. 



Fig. I. Illustration of Parallel-Beam Projection: The object to be scanned is 
placed between the evenly spaced array of an unidirectional X-ray source and 
the detector. Radiation beams from the X-ray source pass through the object 
and are measured at the detector, forms the projections of the image. 

II. ADDRESS PATTERN EXPLORATION 

In a parallel-beam CT scanning system, as shown in Fig. 1, 

the object to be scanned is placed between the evenly spaced 
array of an unidirectional X-ray source and the detector. 

Radiation beams from the source pass through the object and 

are measured at the detector. A complete set of projections 

is obtained by rotating the arrays and taking measurements 

for different angles over 1800, forming the Radon transform 

of the image (i.e., projection data). The inverse of the projec­

tion data allows to reconstruct the tomographic images (i.e., 

backprojection) [12], [1]. 

Shepp and Logan backprojection algorithm. The Shepp 
and Logan backprojection algorithm is the most well-known 

backprojection algortithm [2], [3]. For each pixel, P located 

at (x, y), and each projection angle ei, the first step in 

backprojection is to locate the pixel in an appropriate beam 

(ray). If the center of P is not on a ray, the distance (d) 
to its adjacent rays is calculated and the contribution from 

the adjacent rays to the pixel (Qp) is computed according to 

the linear interpolation equation (1), assuming that pixel is 
enclosed by the tth and (t + l)thth rays, 

Qp(x,y,ei) = Rt + (djL) ·  (Rt+1 - Rt), (1) 

where Rt is the value of tth ray, d is the interpolation distance, 

and L is the ray interval. Qp represents the contribution of the 

projection angle ei to the current pixel value. 

In the above equation, the address t to the projection data 
memory and the interpolation distance d are computed as 

follows (assuming the target image has the dimension size 

of r x c): 
r c 

tx,y,Oi = (x -"2) . cos ei -(y -"2) . sin ei + t offset· (2) 

d = t(e) - It(e)J. (3) 

Address difference. The above procedures are to be re­

peated for every angle and for every pixel, which involves sig­

nificant address computation and memory access operations. 

However, these operations can be simplified by the observation 

that the address differences for adjacent pixels and angles are 

within a very small and predictable range. To illustrate this 

inherent address pattern, we show the address to the next 
projection of angle eH1 in (4): 

r c 
tx,y,Oi+l = (x -"2) . cos (eH1) -(y -"2) . sin (eH1) + toffset· 

(4) 

The address difference (<5h) between (2) and (4) could be as 

r c 
<5h = (x -"2) . <5cosoi + ("2 -y) . <5sino" (5) 

with <5cosoi = cos(ei+1) -cos(ei) and <5sinOi = sin(eH1) -
sin(ei) . Using trigonometric identities, we can compute the 

bounds on (5) as follows (assuming r = C and N is the total 

number of projections): 

. n r n(2i + 1) n(2i + 1) 
l<5h l::;12.sm(N)·"2·(cos( N )-sin( N ))1· 

(6) 

(6) has a maximum bound of v'2n· N for relatively large N. 
This shows that <5h is limited to a fairly small range when 

the appropriate ratio of r and N is selected. For example, the 
value is always less than one when N ::; �. 

This observation can easily extend to two scenarios below: 

(a) The address difference between the next k projection 

memory of angle ek and the first memory of angle e1 for 

the same pixel P(x, y) will increase proportionally to k: 
rc; r r 

Ibtk l = Itx,y,Oi+k -tx,y,o, l ::; v2n· N ·k· � 4.44· N ·k . (7) 

(b) The address differences when both pixel coordinate and 
projection angle are incremented are also bounded by a limited 

range. For demonstration purpose, we define the problem as 
to reconstruct four neighborhood pixels in parallel, that is, 

(x, y), (x + 1, y), (x, y + 1), (x + 1, y + 1). Then, their 

addresses in adjacent k projection memories for angles from 

ei and eHk need to be computed. We denote the address of 

the first pixel (x, y) in the first memory ei as the reference 

address (to = tx,y,o'). Then we can easily prove that other 
addresses are all very close to to for the required k, and the 

maximum possible address difference to to is introduced by 
the last pixel (x+ 1, y+ 1) in the last projection memory eHk. 

<5tmax = tx+1,y+1,Oi+k -tx,y,Oi = cosei+sinei+k·<5h . (8) 

It is easy to show that (8) has the maximum value of v'2 + 
4.44 . N . k and it is limited to small range, e.g., the value 

must be less than four when N ::; � and k = 4. 
The basic idea is, since the address differences for adja­

cent projections angles and adjacent pixels are small, these 

addresses will activate the same or adjacent wordlines when 

such memories are located horizontally in parallel with each 

other. It leads to opportunities to share the memory decoder 

among these memories by programming extra "intelligent" 

logic functionalities into the memory periphery. 

III. SMART MEMORY CUSTOMIZATION FOR 

PARALLEL BACKPROJECTION ARCHITECTURE 

In this section, we describe our approach to optimize the 

memory organization and backprojection architecture based on 

the observed memory access patterns. 
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Fig. 2. Consecutive Access Memory. As the basic memory structure in the 
paper, our customized memory can output consecutive memory entries in one 
clock cycle and allows parallel memory banks to share the x-decoder. 

A. Consecutive Access Memory 

As we mentioned, linear interpolation is an important proce­

dure of the algorithm. Linear interpolation requires the access 

to two adjacent array addresses of the projection memory in 

a single clock cycle. In our previous work [15], we have 
proposed a rectangular-access smart memory which is able to 

output an arbitrary rectangular block in a 2D data array. Its 1D 
simplified version, called 1D Consecutive Access Memory, can 

be used to output consecutive elements from a 1D data array. 

The functionality is defined as to support single-clock-cycle 
access of 2b data points from a 2n size data array. We build a 

parameterized memory which is first divided into 2b memory 

banks and these memory sub-banks are located horizontally 

parallel to each other. Fig. 2 shows the organization of the 

memory block when n = 6 and b = 2. The main idea is to let 
these 2b memory banks share one modified X-decoder. The 

X -decoder is specifically designed to activate two adjacent 

wordlines simultaneously (e.g., W L[O] and W L[l D. Another 

Y -decoder is used to select one of the two activated word lines 

for each memory bank with the additional AND operations. 

This consecutive access memory serves as the basic memory 
structure in our method. In the rest of paper, we will propose 

more advanced memory sharing strategies customized for 

backprojection algorithms. 

B. Smart Memory Organization and Parallel Backprojection 

We will use a simple example to show the basic idea of the 

method. From the analysis of equation (6), we have derived 

that the address difference of the two adjacent memories (!Stol) 
is less than one when N ::::; �. This implies that the two 

adjacent memory addresses after rounding must be either the 
same or adjacent to each other. In Fig. 3, we show the physical 

data layout in our consecutive access memory. If the address 

of projection Bi is located in between t2 and t3 (denoted by 
[t2' t3D, then the address in the next adjacent projection BHI 
for the same pixel has only three possible locations, that is, 

[tl' t2], [t2' t3] or [t3, t4]. In the illustration we highlight the 
corresponding active wordlines if implemented in the consec­

utive access memory. It's seen that if the active wordlines for 

the first memory are wh and Wl2, then in the next memory, 

the active wordlines must be either the same (wh and Wl2) or 

.---------------------------------------------------------------.. 
w/ :wl I wi : � to t1 Ii � to I t1 I '� to t1 I � to t1 I i 
'� t2 t3 I!'� t2 I t3 I '� t2 t3 I '� t2 t3 I! 
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Projection angle B, ! B,+, (a) c, = I (b) c, = 0 (e) c, = 0 ! (Reference) "---------------------------------------------------------------. 

Fig. 3. Data Layout in Adjacent Two Projection Memories. If t2 and t3 are 
required in the first reference memory of the projection ()i, then beam pixel 
required in the next memory of projection ()i+ 1 has three possible locations, 
that is, [t1,t2], [t2.ta] or [t3,t4]. 
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Fig. 4. Decoder-MUX. The wordlines of the first memory (wlai) are 
configured to generate the wordlines for the next memory (wlbi), so that 
the decoder of the latter memory could be eliminated. 

shifted upwards by one step (wlo and wh). We use a control 

signal ct to differentiate these two situations and ct can be 

calculated from the input address. Based on this observation, 

we propose two "smart" memory approaches which are named 

decoder-mux and output-mux respectively. 

Decoder-mux. In the first approach, called decoder-mux, 

we eliminate the decoder of the second memory and let it 

share the same decoder with the first memory by adding 

some configuration logic (which we also call decoder-mux) 

in between the two sets of memory wordlines. This logic 

configures the wordlines of the first projection memory (wlai) 
to generate the wordlines for the next adjacent projection 

memory (wlbi). The relationship between the wordlines of the 
two adjacent memories can be derived as 

(9) 

The configuration can be implemented using only AND 

and OR logic gates, which ensures the feasibility of the 

hardware implementation. In Fig. 4, we show an example 

of the configuration logic involving six wordlines. In this 

example, wlal and wla2 are activated in the first memory 

array. After the decoder-mux block, either the same wordlines, 

wlbl and wlb2, are activated in the second memory when 

Ct = 0 (Fig. 4(a)), or the neighborhood wordlines, wlbo and 
wlbl, are activated when Ct = 1 (Fig. 4(b)). 

Output-mux. In the alternative approach named output-mux 

the two memories still share the decoder but the configuration 

logic is located outside of the memory (see Fig. 5). In this 

approach, memories are designed as the 1 x 4 consecutive 

access memories to output more elements than required. In this 

example, t2, t3 along with their nearest neighbors tl and t4 are 

all read out from the memories. Then the configuration logic 
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Fig. 5. Output"MUX. The memories are configured to output four pixels 
simultaneously, and the output mux is used to select the required two pixels 
from the four outputs for the liner interpolation in each backprojection. 

(output-mux) is used to select the appropriate two elements 

from the four outputs. In this approach, the active wordlines 

for the two memories are always the same in all the situations. 

Horizontal and vertical parallel backprojection. The CT 

image reconstruction naturally lends itself to parallel process­

ing since each backprojection can be processed independently. 

However, in the conventional parallel backprojection, on-chip 

memory is typically divided into many small banks to support 

the necessary large data bandwidth. To exploit the proposed 

smart memory to obtain superior hardware efficiency of the 
parallel backprojection, we propose two parallel approaches, 

horizontal and vertical parallel backprojection. 

The horizontal parallel backprojection can perform more 
than two backprojections in parallel and all the involved 

projection memories share the same memory decoder using 

either decoder-mux or output-mux approach. Fig. 6 shows the 

example of accessing in eight adjacent projection memories. 

Assuming that the pixels addressed by the first memory 

addresses are t3 and t4, we highlight the possible locations 

of the two pixels accessed in the next seven memories. We 

observe that they are all clustered locally around t3 and t4, 
and are bounded by to and t7' For example, the pixels required 

for projection eH3 could be any two adjacent pixels within 

[h, t6]. Required pixels spread out further from t3 and t4 
for memories that are further away from the first memory as 

explained by formulae (7), as the address difference of the next 

k projection memories from the first reference is increasing 

proportionally with k.  Similar to the output-mux design shown 

in Fig. 5, we configure each projection memory as an 1 x 8 
consecutive access memory to output all the shown eight pixels 

and use another 8-to-2 output-mux to select the appropriate 

two outputs from the eight outputs for each projection memory. 

In this way, all the eight memories could share the same 

decoder and seven memories decoders are saved. However, 

as the projection memories output more pixels than required, 

many memory outputs are actually wasted. An approach to use 

these wasted pixels is applying vertical parallel backprojection, 

as discussed next. 

Vertical parallel backprojection is performing the backpro­

jections of multiple neighborhood pixels in parallel. E.g., in 
equation (8) we discuss the address differences for performing 

the backprojections of four neighborhood pixels concurrently. 
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Fig. 6. Parallel Projection Memory Accessing. The highlighted two"pixel 
groups represent the beam pixels that have chances to be accessed in each 
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Fig. 7. Backprojection Architecture. Each IPE stores and performs eight 
backprojections for four neighborhood pixels concurrently. 

Backprojection of each pixel per projection angle requires one 

linear interpolation and involves memory accessing of two 

pixels, so totally it requires eight pixels to be accessed from 

each projection memory. (8) shows that these eight pixels will 

be contained in the outputs of the above 1 x 8 access memory 

in most situations. Therefore, the memory architecture needs 

no change for the vertical parallel backprojection since we 
just take advantage of the unused memory outputs from 

the horizontal parallel backprojection. By implementing both 

horizontal and vertical parallel backprojection concurrently 

using the modified consecutive access memory, all the memory 

outputs are utilized and a much higher throughput is achieved. 

Advanced parallel pipeline backprojection engine. Based 

on our proposed horizonal and vertical backprojection methods 

we designed an Advanced Parallel Pipeline backProjection 

Engine (APPPE) based on the Parallel Pipeline backProjection 

Engine (PPPE) that was proposed in [5], [I]. APPPE is 

composed of a pipeline of identical image processing engines 

(IPEs), where each IPE performs multiple backprojections to 

multiple pixels concurrently. Fig. 7 shows an example where 

the input image passes through the IPEs on the pipelined image 
bus, four pixels at a time. Each IPEi in the pipe performs 

eight adjacent backprojects from ei to eH7 to the current four 

pixels (P(x, y), P(x+l, y), P(x, y+l), P(x+l, y+l)), and 

then passes these pixels onto the IPEHI as it receives another 

four pixels from IPEi-I. As these pixels are sent through the 

pipe lined array, the pixel values are accumulated from the 
contributions of all the projections. 

IV. DESIGN AUTOMATION 

In this section we analyze the design space and describe 

our design automation framework for the hardware synthesis 

of a user-specified backprojection design point. 

Design tradeoff space analysis. Designing a CT image 

reconstruction system is a tradeoff problem involving algo­

rithmic constraints, performance, hardware cost, and image 
accuracy. The discussion of address patterns in Section II 

shows that the ratio of image dimension size (r) and the 



projection numbers (N), rlN, is an important algorithm 

constraint. Smaller r IN indicates smaller adjacent address 

differences, which allows for more adjacent projection mem­

ories sharing the memory decoder, saving more hardware cost 

and computing latency. However, it also limits the use of 

the method in applications with larger image size r and/or 
fewer projection angles N. For larger rlN, the corresponding 

larger address difference will limit the number of projection 

memories that can share the decoder. For example, in Fig. 6, 

the last two projection memories of (}i+6 and (}iH may require 

to access two pixels at the two ends, which are not accessible 

along with other eight pixels from the 1 x 8 consecutive access 

memory. To solve this problem we could increase the memory 

access width and apply more complicated configuration logic. 

However, this would increase the hardware cost. Alterna­

tively, to lower hardware cost we could assign the nearest 

neighborhood pixels if the requested pixels are not available, 

which would result in loss of image accuracy. This shows 

that different design decisions will result in different tradeoffs. 

The combination of these design choices constitutes a huge 

design space. Further, exploring the design tradeoff space 

requires customized memory designs, which are traditionally 

prohibitively expensive. Thus, a strong design automation tool 

is required to make the hardware synthesis feasible. 

End-to-end smart memory design framework. We have 

developed a smart memory design framework that provides 

designers with a graphical user interface to select design 

parameters, and automatically generate the optimized smart 
memory hardware IP [14], [13], [15]. As shown in Fig. 8, the 

tool frontend is built using the chip generator infrastructure 

"GENESIS" [10], [4]. It provides a user-configurable graphical 

interface that allows the user to input design specification and 

generates the optimized RTL automatically. The tool backend 

is a smart memory compiler for the physically synthesis of 

customized smart memory, which is developed based on the 

logic and memory co-design methodology [8], [9], [15]. Using 
this tool, embedded random logic and memory periphery are 

synthesized with the memory cells one shot to a small set of 

pre-characterized layout pattern constructs. Lithographic com­

pliance between the co-designed logic and memory ensures 

the sub-20nm manufacturability of smart memory blocks. The 

architectural frontend and physical backend is combined to 

build an end-to-end smart memory design framework. Its input 

is the design specification and the output is the ready to use 
hardware (RTL, GDS, .lib, .lef). 

V. EVALUATION AND RESULTS 

In this section, we evaluate the smart memory architectures 

with respect to area, power, latency, and accuracy. The design 

framework is used to generate various design points. Area and 

power are measured from the physical implementations of the 

design on a commercial 14 nm SOl CMOS process at 500MHz 
and the shown results are all normalized. 

Cost evaluation. In Fig. 9 (a), we first compare the hard­

ware cost of two smart memory approaches (decoder-mux 

and output-mux) to the conventional memory approach where 
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Fig. 8. Smart Memory Design Framework 

each memory has its own decoder. The memories studied 
here have the size of 4,096-words and wordlength of 16 bits, 

and we only consider two memories implemented as 1 x 8 
consecutive access memories sharing the decoder with each 

other. We observe that the output-mux approach is more cost­

efficient as saves around 30% area and 20% power while 

decoder-mux only achieves around 5% area saving and 10% 
power saving. The reason is that in decoder-mux each wordline 

is accompanied by a set of configuration logic (two AND 

gates and one OR gate), and each set of logic communicates 

with its local wordline. This explains also why decoder­

mux achieves relatively higher power-efficiency compared to 
its area-efficiency. In contrast, output-mux only requires a 

single large configuration logic at the memory output while 

its memories have large access width as they output more 

pixels than required. Due to the superiority of the output-mux 

method, it will be used for our backprojection system in the 

following discussions. 

In Fig. 9 (b) we evaluate the hardware cost of the MEPPPE 

memory architecture for reconstructing a 256 x 256-size image 

from 1,024 projections. The x-axis is the parallel degree Pd, 
which is defined as the number of adjacent backprojections 
that are performed in each IPE concurrently and its value 

varies from two to eight. In our implementation these Pd 
projection memories will all share the same memory decoder. 

The y-axis shows the relative area and power compared to the 

conventional design where no memory sharing strategies are 

used. We see that more than 40% area savings and more than 

30% power savings can be achieved with the increase of Pd. 
Fig. 9 (c) shows that the latencies are decreasing proportionally 

with the increase of Pd as expected. Moreover, we achieve a 

four times performance improvement by computing four pixels 

in parallel in each IPE. 

Accuracy evaluation. As we gain in both of hardware cost 

and performance, the effect on accuracy needs to be evaluated. 
We measure the mean square error (MSE) of the reconstructed 

image compared to the reference image and plot the results 

in Fig. 10 for parallel degrees (Pd) from one to eight. As 
expected, the error increases when either Pd or algorithm 

parameter (r IN) increases. This is because that we let Pd 
projection memories share the same memory decoder, and 

it will introduce error if the address differences of these Pd 
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projection memories are not small enough which could happen 

when Pd and (r / N) are large. In our implementation, we 

carefully manipulate the data precision so that the numerical 
errors can be ignored in the accuracy comparison. In Fig. 11 

we display the reconstructed head phantom images from 

hardware simulation, which indicates fairly high image quality 

for all the studied parallel degrees. We also observe the gradual 

deterioration of the image quality for higher parallel degree, 

which allows us to tradeoff image accuracy with hardware cost 

in applications where minor distortion is acceptable. 

V I. CONCLUSION 

The emergence of construct-based design facilitates the 

robust synthesis of cost-effective smart memory blocks that are 

customized for specific applications. This cutting-edge design 

methodology creates opportunities to re-design algorithms and 

re-architect the hardware structure to match the advanced tech­

nology capabilities. In this paper we propose smart memory ar­

chitectures and the end-to-end design framework to implement 

them for the CT image reconstruction problems. The results in 

a 14nm CMOS process demonstrate significant improvements 

in area, power and performance. Moreover, we present the 

opportunities to tradeoff hardware cost with acceptable image 

accuracy based on appropriate algorithm tuning. This paper 

demonstrates that the embedded memories in data-intensive 

computing can exploit the smart memory design methodology 

and the inherent address pattern of the algorithm to achieve 

superior power and performance efficiency. 
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